Integration of Metabolism

Integration, regulation and perturbation of metabolism

Learning Objectives

Describe tissue & cellular metabolic response to feeding, fasting and starvation

Ref.; Markes Medical Biochemistry

Prepared by: Prof. Abdel-Raheim Meki
Presented by: Prof Sahar EM El-Deek
Assiut University, Biochemistry Dept, Faculty of Medicine,

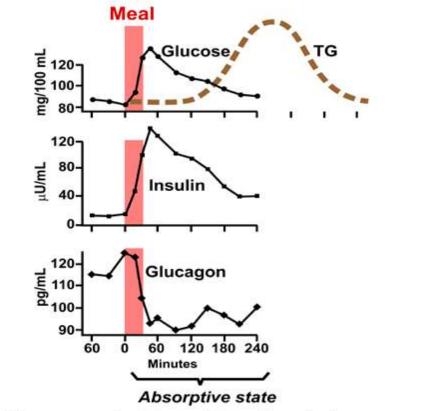
The fuels used by tissues

- 1-Glucose
- 2- Lactic acid
- 3- Fatty acids
- 4-Ketone bodies
- 5- Glycerol
- 6- Carbon skeleton of AA

<u>Different organs/tissues</u> or same organs <u>at different states (well fed /fasting states)</u> have <u>different needs</u> for fuel metabolism.

Preferred fuel for brain: Glucose. In extreme situations it can use *ketone bodies*. Preferred fuel for Heart: FA (70 %)

Anerobic tissues (No Mit, or poor blood supply) use glucose: e.g. RBCs, Retina, Adrenal Medulla, Lens


Inter-conversion of food stuffs

- ➤ Glucose → acetyl CoA → FA mainly in the liver (Lipogenesis)
- > FAs cant not give glucose (conversion of pyruvate into active acetate is irreversible).
- Glycerol of TAG Glucose (gluconeogenesis)
- Lactate from RBCs and skeletal muscles can give glucose (gluconeogenesis) (Cori cycle)
- Carbon skeleton of ketogenic AAs ---- acetyl CoA ---- ketone bodies (ketogenesis)
- Carbon skeleton of glucogenic AAs ——— Glucose (gluconeogenesis)
- Non –essential AAs could be formed from intermediates of glycolysis and kreb's cycle (transamination)

Metabolism in well –fed state (WFS)

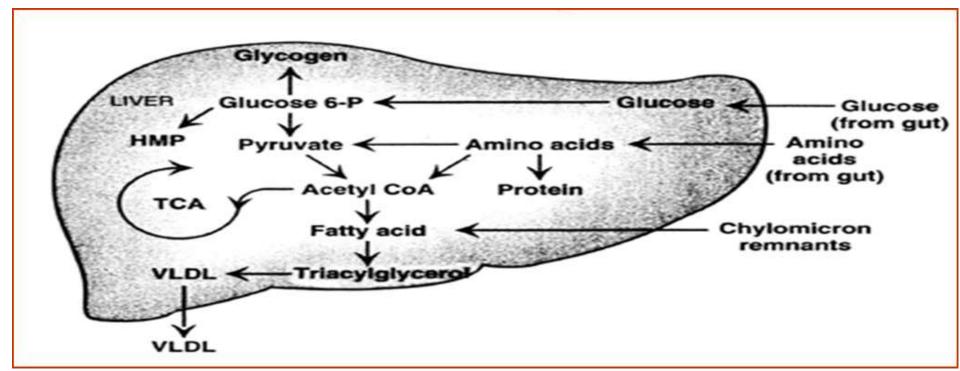
Absorptive state: 2-4 hrs after a normal meal.

- Circulating dietary glucose, amino acids and chylomicrons (TAG)
- ➤ High *insulin/glucagons* ratio promotes anabolic period of glycogen, TAG and protein synthesis.
- Almost all tissues use glucose as fuel during this period.

Changes in blood levels of glucose, insulin, and glucagon after ingestion of a carbohydrate-rich meal.

Fuel Stores: occurs during feeding state in presence of insulin

Glycogen – smallest and used up to < 1 day.


TAG stores largest (three months without any food intake)

Protein is used to produce glucose by gluconeogenesis

liver In well -fed state (WFS)

Carbohydrates:

- Glucose rapidly transported into liver: And phosphorylated by glucokinase to glucose-6- P.
- Increase glycolysis
- <u>Acetyl CoA</u> (produced from pyruvate by pyruvate dehydrogenase, PDH) enters TCA cycle for energy production and used for FA synthesis.
- Increase activity of HMP shunt to produce NADPH that is necessary for FA synthesis
- Increase glycogen synthesis.

Fats:

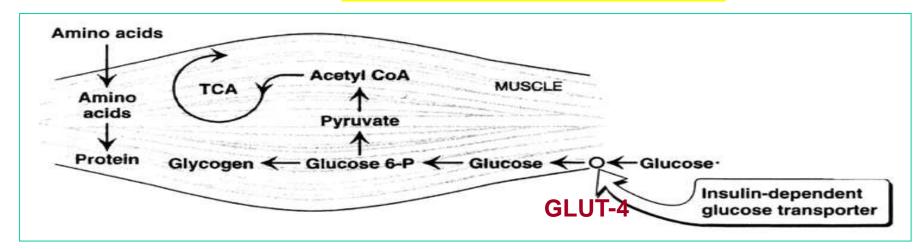
- Increased FA synthesis (lipogenesis)
- Increase TAG synthesis (HSL is inhibited) ----- exported from liver as VLDL (TAG carrier)

Amino acids:

- Increase protein synthesis and exported to other tissues.
- Excess AAs are deaminated, carbon skeletons used for energy production or fatty acid synthesis).

Adipose tissue In well -fed state (WFS)

<u>Carbohydrates:</u>


- Increased insulin promotes glucose uptake
- Increased glycolysis yields glycerol-3 phosphate for TAG synthesis
- Increased HMP activity produces NADPH for FA synthesis.
- It lacks Glycerol kinase

GLUT-4 Insulin-dependent glucose transporter Glucose → Glucose → Glucose 6-P (from gut) **Acetyl CoA** TCA Fatty acid Chylomicrons (from gut) Triacylglycerol Chylomicron remnants VLDL

Fats:

- FA synthesis is increased, but in humans FA come mostly from chylomicrons (major) and VLDL (minor)
- Increased TAG synthesis and Decreased TAG degradation

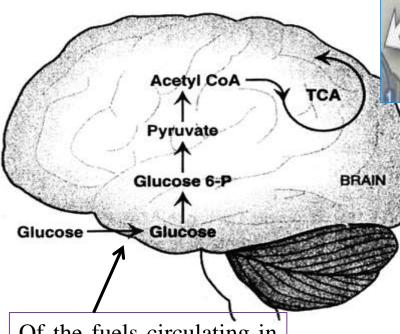
Skeletal muscle In well –fed state (WFS)

<u>Carbohydrates:</u> Increase insulin promotes glucose uptake (by GLUT-4)

- increase glycolysis and glucose oxidation and glycogenesis.
- Inhabit glycogenolysis

Fats: FAs from chylomicrons and VLDL are used for energy

BCAAs (Val, Ile, Leu) used for protein synthesis and energy (muscle is the principal metabolizer) branched chain amino acids (BCAAs)


No fuel storage in brain

<u>brain</u>

Brain completely oxidizes glucose to CO₂ and water.

In well -fed state (WFS)

No fuel output from brain

Of the fuels circulating in the blood can penetrate the blood-brain barrier ➤ It uses about 120 g glucose/day

➤ Brain consumes 20% of total O2 consumption

➤ Depends on blood glucose for energy

➤ FAs (carried on Alb.) do not pass efficiently through blood brain barrier (No beta – oxidation of FA occur)

A glucose consumer organ

Brain depends entirely of the blood glucose. Lower level of glucose (less than 40 mg/dL) causes brain dysfunction (a significant deterioration in attention) and coma.

Starvation

α-cell

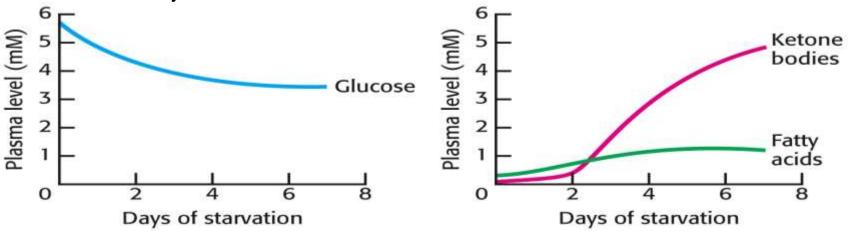
- Fasting-decline in blood glucose results in decreased insulin and increased glucagon.
- In this *catabolic state*, glycogen, TAG and proteins are degraded.
- Priorities are to supply glucose to brain (& other glucose requiring tissues) and metabolize FA and ketone bodies as fuels in other tissues.

Table 36.1. Fuel Utilization by Various Tissues during Starvation (Fasting)

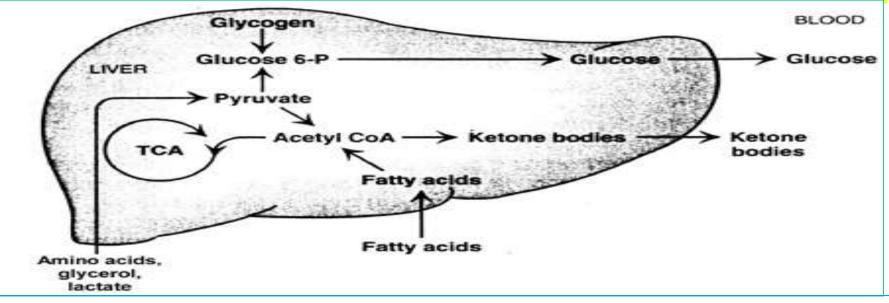
Tissue	Glucose	Fatty Acids	Ketone Bodies
Nervous system	++	_	++
Skeletal muscle	_	++	++
Heart muscle	_	+	++
Liver	_	++	_
Intestinal epithelial cells	_	_	++
Kidney	_	+	+

Prolonged Starvation

First priority -> provide sufficient glucose to brain and other tissues that are dependent on it


Second priority -> preserve protein -> shift from utilization of glucose to utilization of fatty acids + ketone bodies

-> mobilization of TAG in adipose tissues + gluconeogenesis by liver -> muscle shift from glucose to fatty acids as fuel

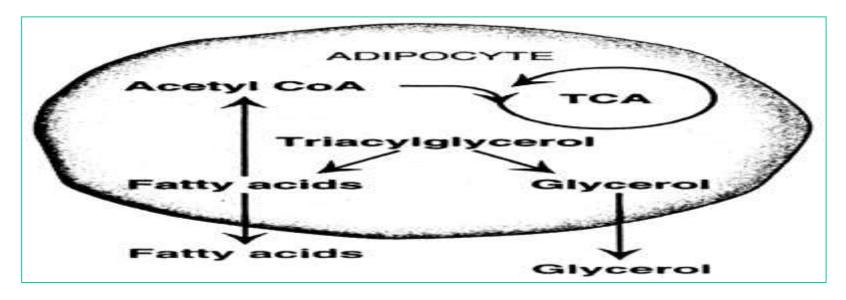

After 3 days of starvation -> liver forms large amounts of ketone bodies (shortage of oxaloacetate) -> released into blood -> brain and heart start to use ketone bodies as fuel

After several weeks of starvation -> ketone bodies major fuel of brain

After depletion of TAG stores -> proteins degradation accelerates -> death due to loss of heart, liver, and kidney function

Liver in fasting state

<u>Liver produces</u> a lot of KBs from FAs oxidation as a message to other tissues to stop using glucose.

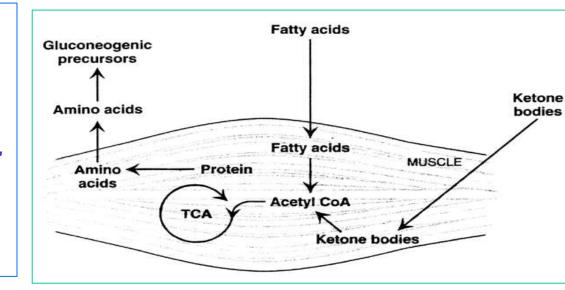

- Glyogenolysis: for glucose export (depleted in about 18-24 hrs.
- Gluconeogenesis: ----- synthesis of glucose from amino acids, glycerol and lactate
- FA oxidation (FA comes from adipose tissue) & (ketogenesis) for export ketone bodies to extrahepatic tissues.

Metabolic role of ketone bodies during starvation

- 1. Source of energy for most of tissues [except anaerobic tissues [needs Kreb's cycle and RC].
- 2. Inhibit muscle proteolysis [proteolysis of > 50% is incompatible with life].
- 3. Spare glucose utilization for brain and glucose depending tissues.

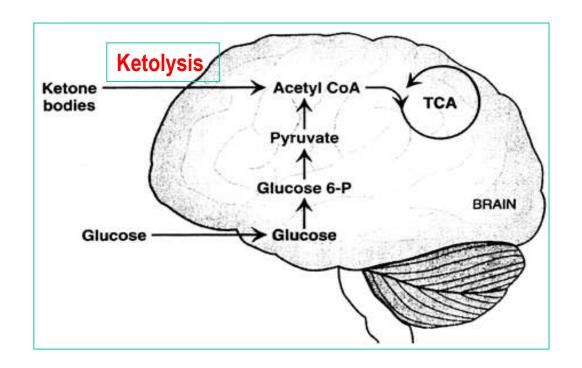
Drawbacks: Metabolic ketoacidosis.

Adipose tissue in fasting



- Glucose doesn't enter because insulin is required
- TAG degradation occurs
- Adipose tissue uses FAs as energy source
- FA are released, circulate bound to serum albumin, and are used for energy in various tissues
- Glycerol goes to liver for gluconeogenesis

Skeletal muscle in fasting —


Skeletal muscle normally makes up about one half of the body's mass

- It cannot dephosphorylate
 Glucose-6-P (Absence of G-6-phosphatase)
- It lacks receptors for glucagon.

- ➤ Decreased glucose entry (GLUT-4, insulin dependent)
- > FAs and KBs are used as fuels.
- ➤ Protein degradation to supply gluconeogenesis in the liver (alanine, glutamine are most abundant in export)
- ► BCAAs (Val, Ile, Leu) used for energy (muscle is the principal metabolizer) after conversion them into alpha keto acids and NH3 which removed as glutamine and alanine from kskeletal muscle.

Brain in fasting —

Uses glucose

After 2-3 weeks of fasting, it adapts to use KBs (70% of energy) and glucose.

Long chain of FA do not pass through blood-brain barrier

Dr Meki

A person's survival time under starvation condition is mainly determined by the size of the <u>TAG depot</u>.

What happens after depletion of the TAG stores?. The only source of fuel that remains is proteins. Protein degradation accelerates and death inevitably results from a loss of heart, liver or kidney function.

Death from starvation occurs as a result of:

- Metabolic acidosis and dehydration
- Pneumonia (muscle weakness, decreased Antibodies formation)
- Shock (depletion of blood volume)
- Protein degradation and loss of heart, kidney and liver functions